

ELEC-E7211 Digital Wireless Communication D

Course Plan, fall 2024

Olav Tirkkonen
Department of Communications and
Networking,
Aalto University

1

General

- Course in M.Sc. Program in Communications Engineering
- Acceptable for post-graduate studies
- Prerequisites: Working understanding of
 - Linear algebra
 - ☐ Digital communication in AWGN channels
 - Matlab & some mathematica
- Teachers
 - ☐ Prof. Olav Tirkkonen, responsible teacher, lecturer.
 - ☐ Dr. Mahdi Bayanifar, tutorials, homework.

F2F Teaching

- □ Lectures 2.9.-26.11, typically **Tue 12-14 in AS4**
 - Exceptions:
 - First lecture **Mon 2.9**. at 12 in AS4
 - Lectures Tue 8.10 and 26.11 at 12 in **AS3**
 - Some lectures may be distributed remotely in Zoom
- ☐ Tutorials: Wed 12-14 in AS6
 - Eight analytic and four matlab tutorials
 - Please bring your own laptop with matlab installed (Aalto student license)
- Homework assignments:
 - 5 assignments with deadlines over periods 1 & 2

3

Schedule II

Week starting	Week number	Lecture (AS4) Tue 12-14	Tutorials (AS6) Wed 12-14
2.9.	36	Lecture 1 (Monday)	Tutorial 1
9.9.	37	Lecture 2	Tutorial 2
16.9.	38	Lecture 3	Tutorial 3
23.9.	39	Lecture 4	Matlab tut 1
30.9.	40	Lecture 5	Tutorial 4
7.10.	41	Lecture 6 (AS3)	Matlab tut 2
14.10.			
21.10.	43	Lecture 7	Tutorial 5
28.10.	44	Lecture 8	Matlab tut 3
4.11.	45	Lecture 9	Tutorial 6
11.11.	46	Lecture 10	Matlab tut 4
18.11.	47	Lecture 11	Tutorial 7
25.11.	48	Lecture 12 (AS3)	Tutorial 8

Teaching Material

- □ Slides & tutorial solutions distributed in MyCourses.
- ☐ Textbook A. Goldsmith: "Wireless Communication"
 - e-copy at https://primo.aalto.fi/
 - 1. Log in with your aalto-credentials
 - 2. Search for "Goldsmith", select "Wireless Communication"
 - 3. Select the e-book and go for it
- Other recommended books:
 - Madhow, "Introduction to Communication Systems",
 - ☐ Tse-Viswanath, "Fundamentals of Wireless Communications"
 - ☐ Haykin-Moher, "Modern Wireless Communications"
 - Proakis, "Digital Communications",

Ę

5

Learning Objectives

- After the course the student
 - Is prepared to start working on a contemporary physical layer wireless communication engineering problem
 - Understands the functionalities of the physical layer in a modern communication system in multipath multiantenna fading channels
 - Understands principles of OFDM, multiantenna and multiuser communication
 - Can operate a link simulator

7

Exam

- □ Exams in December 2024 and January 2025
 - Tentatively 5.12.2004 and 27.1.2025 at 16:30-19:30
 - See SISU for final date, time & place.
- Exams will have 5 questions
 - 1-2 questions based on explaining theoretical concepts, of the type discussed in the lectures
 - 3-4 analytic calculations of the kind discussed in the tutorials
- The exams are open book
 - Students may take any material printed or written on paper to the exam, including books, printouts and hand written notes.
 - No electronic equipment is allowed except a scientific calculator
 - Thus phones, tablets, computers and programmable calculators may not be used in the exam.

Assumed Starting Level & Equalization

- B.Sc. course level knowledge on principles of digital communications in AWGN channels
 - As exemplified by course by O. Tirkkonen
 - The material of this course will be disseminated in MyCourses
 - □ Lectures 2-11 of the course
 - □ The material has references to the textbook B.P. Lathi & Z. Ding: Modern Digital and Analog Communication Systems, International 4th ed, Oxford University Press 2010.

9

Level of Digital AWGN Knowledge?

- QPSK
- QAM
- AWGN
- SNR
- BER
- SER
- Matched Filter
- Capacity
- Spectral Efficiency
- Patching up AWGN knowledge:
 - → Take course ELEC-C7231 in spring
 - Course is in Finnish, but all material exists in English, and it is possible to do the course in English
 - Can be used as a elective course in the major, if not earlier taken

Questions, comments?