Please note! Course description is confirmed for two academic years, which means that in general, e.g. Learning outcomes, assessment methods and key content stays unchanged. However, via course syllabus, it is possible to specify or change the course execution in each realization of the course, such as how the contact sessions are organized, assessment methods weighted or materials used.

LEARNING OUTCOMES

  • Ability to describe physical background of typical flow phenomena in laminar and turbulent flow fields
  • Ability to explain the physical meaning of the fundamental flow equations and of the terms in the equations, how the equations are formed and to apply the equations to describe simple flow cases
  • Ability to describe the fundamental characteristics of boundary layer flow, to form the equations for boundary layer flow and to apply the equations to study the behaviour of boundary layer flows
  • Ability to explain, what turbulence is, what are the fundamental concepts related to it and how turbulence is typically modelled
  • Ability to describe the formulation of discretised flow equations using finite difference method, common characteristics of selected discretisation schemes, sources of uncertainty in numerical predictions and concept of verification and validation and to estimate the truncation error of selected schemes

Credits: 5

Schedule: 13.09.2021 - 28.10.2021

Teacher in charge (valid for whole curriculum period):

Teacher in charge (applies in this implementation): Tommi Mikkola

Contact information for the course (applies in this implementation):

Teacher-in-charge: University lecturer Tommi Mikkola (tommi.mikkola@aalto.fi)

CEFR level (valid for whole curriculum period):

Language of instruction and studies (applies in this implementation):

Teaching language: English. Languages of study attainment: English

CONTENT, ASSESSMENT AND WORKLOAD

Content
  • valid for whole curriculum period:

    The aim of the course is to deepen your understanding of the physical background of fluid flow phenomena (particularly the influence of viscosity) and the mathematical description and solution of different fluid flow problems. It is assumed that you already have a basic understanding of fluid flow (e.g. conservation principles, kinematics, material derivative, pressure, shear stress, Bernoulli equation). We will shortly revise the derivation of the fundamental flow equations to give you an idea of the fundamental physical processes in fluid flow. We will discuss the possibilities for the solution of Navier-Stokes equations in their full form and the simplifications and solution of the equations in specific cases with particular emphasis on boundary layer and boundary layer like flows. You will learn what turbulence is, how it affects the mean flow and how it is typically handled in the mathematical model. You will also get an introduction to the numerical solution of the flow equations.

  • applies in this implementation

    See Course info page

Assessment Methods and Criteria
  • valid for whole curriculum period:

    Compulsory assignments and exam

  • applies in this implementation

    See Course info page

Workload
  • valid for whole curriculum period:

    Contact hours 56

    Independent work 80

    In total 136 hours (5cr. = 135 hours)

  • applies in this implementation

    Three two hour theory session each week plus two times two hour tutoring
    sessions each week. Five rounds of exercises and one final exam.

DETAILS

Study Material
  • valid for whole curriculum period:

    Kundu and Cohen, Fluid Mechanics (4th edition)

  • applies in this implementation

    See Materials page

Substitutes for Courses
Prerequisites

FURTHER INFORMATION

Further Information
  • valid for whole curriculum period:

    Teaching Period:

    2020-2021 Autumn I

    2021-2022 Autumn I

    Course Homepage: https://mycourses.aalto.fi/course/search.php?search=MEC-E1020

    Registration for Courses: In the academic year 2021-2022, registration for courses will take place on Sisu (sisu.aalto.fi) instead of WebOodi.

    WebOodi

Details on the schedule
  • applies in this implementation

    See Course info page