Please note! Course description is confirmed for two academic years, which means that in general, e.g. Learning outcomes, assessment methods and key content stays unchanged. However, via course syllabus, it is possible to specify or change the course execution in each realization of the course, such as how the contact sessions are organized, assessment methods weighted or materials used.

LEARNING OUTCOMES

After the course the student can

  • describe qualitatively the basic idea of X-ray diffraction and scattering
  • identify biomaterials-related problems that can be solved with X-ray scattering
  • distinguish between small and wide-angle scattering and select one of them to obtain desired information from a biomaterial sample
  • name X-ray techniques available at Aalto and describe the access procedures to synchrotrons, can recall how to find information on beamlines, techniques etc.
  • recognize differences in the measurement and data analysis of different types of biomaterial samples
  • participate in a scattering measurement and data analysis of a biomaterial sample, and present to others what was done
  • plan a simple scattering measurement of a biomaterial sample and conduct it together with a more experienced user
  • interpret in a simple way scattering data originating from a biomaterial sample

Credits: 5

Schedule: 19.04.2022 - 23.06.2022

Teacher in charge (valid for whole curriculum period):

Teacher in charge (applies in this implementation): Ville Liljeström, Paavo Penttilä, Sannamari Hörkkö

Contact information for the course (applies in this implementation):

CEFR level (valid for whole curriculum period):

Language of instruction and studies (applies in this implementation):

Teaching language: English. Languages of study attainment: English

CONTENT, ASSESSMENT AND WORKLOAD

Content
  • valid for whole curriculum period:

    The target of the course is to introduce the students to X-ray-based structural characterization methods (both in theory and in practice) and initiate the application of these methods in the students own research. The topics covered include: generation of X-rays and their interaction with matter, wide-angle X-ray scattering (WAXS)/X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), scattering data analysis related to bio-based materials, and practical aspects of scattering experiments.

Assessment Methods and Criteria
  • valid for whole curriculum period:

    Lectures
    Demonstrations
    Group work
    Other independent studying 

Workload
  • valid for whole curriculum period:

    Lectures 10 h
    Demonstrations and group work 40 h
    Other independent studying 85 h

DETAILS

Study Material
  • valid for whole curriculum period:

    To be announced later

Substitutes for Courses
Prerequisites
SDG: Sustainable Development Goals

    12 Responsible Production and Consumption

    13 Climate Action

FURTHER INFORMATION

Further Information
  • valid for whole curriculum period:

    Teaching Period:

    2020-2021 Spring V-V

    2021-2022 Spring V

    Course Homepage: https://mycourses.aalto.fi/course/search.php?search=CHEM-L2300

    Registration for Courses: In the academic year 2021-2022, registration for courses will take place on Sisu (sisu.aalto.fi) instead of WebOodi.

    15 (chosen based on information given at registration).

    Number of students admitted to this course will be limited (max. 15), based on applications paavo.penttila@aalto.fi

    Submit your application by 15 March 2021.