LEARNING OUTCOMES
After completing the course students will be able to:
1. build kinetic simulation models of the cell growth and product formation
2. connect different models together to build a bioprocess model
3. define parameters for kinetic and static bioprocess models
4. create experimental designs for bioprocess screening and optimization tests
5. create response surface models and define optimum variable values thereof
6. create multivariate models from various data sources including e.g. raw materials, cultivation conditions, product properties, expression data
7. utilize certain chemometric modelling approaches for bioprocess estimation and simulation simulations
8. design simple experiments to find out certain kinetic and optimization parameters of a bioprocess
9. estimate the model validity in various cases
Credits: 5
Schedule: 05.09.2023 - 19.10.2023
Teacher in charge (valid for whole curriculum period):
Teacher in charge (applies in this implementation): Tero Eerikäinen
Contact information for the course (applies in this implementation):
CEFR level (valid for whole curriculum period):
Language of instruction and studies (applies in this implementation):
Teaching language: English. Languages of study attainment: English
CONTENT, ASSESSMENT AND WORKLOAD
Content
valid for whole curriculum period:
Bioprocess behavior in different modes and modeling principles combined to experimental works. Computer-aided bioprocess modeling and simulation. Creating bioprocess models in MATLAB and Simulink environment. Linear and non-linear estimation of the kinetic parameters for types and models. Multivariate modeling possibilities and limitations. Response surface modeling, principal component analysis, neural networks. Use of models as a part of Quality control as process analytical technique. Creating a bioprocess simulation model and validating model parameters.
Assessment Methods and Criteria
valid for whole curriculum period:
Lectures, computer exercises, assignments and independent studying
Workload
valid for whole curriculum period:
Total 135 h = 5cr
Lectures and exercises 24 h, 2x2 h per week
Assignments 47 h
Independent studying 60 h
Exam 4 h
DETAILS
Substitutes for Courses
valid for whole curriculum period:
Prerequisites
valid for whole curriculum period:
SDG: Sustainable Development Goals
9 Industry, Innovation and Infrastructure
12 Responsible Production and Consumption
FURTHER INFORMATION
Further Information
valid for whole curriculum period:
Teaching Language : English
Teaching Period : 2022-2023 Autumn I
2023-2024 Autumn IMax. 20 students. Students in the Biotechnology major are prioritized.
A course implementation may be cancelled if the number of students enrolled to the course implementation does not meet the required minimum of five students. In the case of cancelled course implementations, the students enrolled to them must be provided with an alternative way of completing the course or be advised to take some other applicable course.