Skip to main content
MyCourses MyCourses
  • Schools
    School of Arts, Design, and Architecture (ARTS) School of Business (BIZ) School of Chemical Engineering (CHEM) –sGuides for students (CHEM) – Instructions for report writing (CHEM) School of Electrical Engineering (ELEC) School of Engineering (ENG) School of Science (SCI) Language Centre Open University Library Aalto university pedagogical training program UNI (exams) Sandbox
  • Service Links
    MyCourses - Instructions for Teachers - Teacher book your online session with a specialist - Digital tools for teaching - Personal data protection instructions for teachers - Instructions for Students - Workspace for thesis supervision Sisu Student guide Courses.aalto.fi Library Services - Resourcesguides - Imagoa / Open science and images IT Services Campus maps - Search spaces and see opening hours Restaurants in Otaniemi ASU Aalto Student Union Aalto Marketplace
  • ALLWELL?
    Study Skills Support for Studying Starting Point of Wellbeing About AllWell? study well-being questionnaire
  •   ‎(en)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Hi guest! (Log in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

MS-E2112 - Multivariate Statistical Analysis D, Lecture, 9.1.2023-21.4.2023

  1. Home
  2. Courses
  3. School of Science
  4. department of...
  5. ms-e2112 - mu...
 
Syllabus
 

General

  • General

    General

    This course is an introduction to multivariate statistical analysis. The goal is to learn basics of common multivariate data analysis techniques and to use the methods in practice. Software R is used in the exercises of this course. The topics of the course are multivariate location and scatter, principal component analysis, bivariate correspondence analysis, multiple correspondence analysis, canonical correlation analysis, discriminant analysis, classification, and clustering.  

    Note that all the lectures and exercise classes are given on campus. Remote attendance is not possible. 

    Before the course starts, make sure that you know how to calculate the univariate means, medians, variances, and max and min values. Familiarize yourself with the correlation coefficients and common graphical presentations (boxplots, scatter plots, histograms, bar plots, pie charts) of data. Learn to calculate the multivariate mean vector and covariance matrix. Make sure that you know what is a cumulative distribution function, a probability density function, and a probability mass function. Make sure that you know what is the expected value of a random variable. Read about univariate and multivariate normal distributions and elliptical distributions. Make sure that you know what is meant by central symmetric distributions and skew distributions. Recall what are the determinant, eigenvectors and eigenvalues of a matrix and make sure that you know what is meant by a symmetric matrix and a positive definite matrix.

    How to pass this course?

    You are expected to:

    -Attend the lectures and be active - not compulsory, no points, but highly recommended. 

    -Submit your project work on time - THIS IS COMPULSORY - max 6 points.

    -Take the exam - max 24 points. 

    -Participate to weekly exercises (group 1, group 2, group 3 OR group 4) - not compulsory, but highly recommended - max 3 points. 

    -Be ready to present your homework solutions in the exercise group - not compulsory, but highly recommended - max 3 points.

    Max total points = 6 + 24 + 3 + 3 = 36. You need at least 16 points in order to pass the course.

    How to get a good grade?

    -Attend the lectures and be active!

    -Work hard on your project work.

    -Be active in the exercises!

    -Study for the exam!

    Grading is based on the total points as follows: 16p -> 1, 20p -> 2, 24p -> 3, 28p -> 4, 32p -> 5.



    • icon for activity
      ForumAnnouncements Forum
    • icon for activity
      FileNotesLecture3B File
      Image (JPEG)
    • icon for activity
      FileNotesLecture3C File
      Image (JPEG)

Course home

Course home

Next section

Lectures►
Skip Upcoming events
Upcoming events
Loading There are no upcoming events
Go to calendar...
  • MS-E2112 - Multivariate Statistical Analysis D, Lecture, 9.1.2023-21.4.2023
  • Sections
  • General
  • Lectures
  • Assignments
  • Home
  • Calendar
  • Learner Metrics

Aalto logo

Tuki / Support
  • MyCourses help
  • mycourses(at)aalto.fi
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Hi guest! (Log in)
  • Schools
    • School of Arts, Design, and Architecture (ARTS)
    • School of Business (BIZ)
    • School of Chemical Engineering (CHEM)
    • –sGuides for students (CHEM)
    • – Instructions for report writing (CHEM)
    • School of Electrical Engineering (ELEC)
    • School of Engineering (ENG)
    • School of Science (SCI)
    • Language Centre
    • Open University
    • Library
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • Service Links
    • MyCourses
    • - Instructions for Teachers
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Personal data protection instructions for teachers
    • - Instructions for Students
    • - Workspace for thesis supervision
    • Sisu
    • Student guide
    • Courses.aalto.fi
    • Library Services
    • - Resourcesguides
    • - Imagoa / Open science and images
    • IT Services
    • Campus maps
    • - Search spaces and see opening hours
    • Restaurants in Otaniemi
    • ASU Aalto Student Union
    • Aalto Marketplace
  • ALLWELL?
    • Study Skills
    • Support for Studying
    • Starting Point of Wellbeing
    • About AllWell? study well-being questionnaire
  •   ‎(en)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎