Enrolment options

Please note! Course description is confirmed for two academic years, which means that in general, e.g. Learning outcomes, assessment methods and key content stays unchanged. However, via course syllabus, it is possible to specify or change the course execution in each realization of the course, such as how the contact sessions are organized, assessment methods weighted or materials used.

LEARNING OUTCOMES

Students can formalize applications as ML problems and solve them using basic ML methods.

Students can perform basic exploratory data analysis.

Students understand the meaning of the train-validate-test approach in machine learning.

Students can apply standard regression and classification models on a given data set.

Students can apply simple clustering and dimensionality reduction techniques on a given data set.

Students are familiar with and can explain the basic concepts of reinforcement learning and language modeling.

Credits: 5

Schedule: 02.09.2024 - 13.12.2024

Teacher in charge (valid for whole curriculum period):

Teacher in charge (applies in this implementation): Pekka Marttinen, Stephan Sigg

Contact information for the course (applies in this implementation):

CEFR level (valid for whole curriculum period):

Language of instruction and studies (applies in this implementation):

Teaching language: English. Languages of study attainment: English

CONTENT, ASSESSMENT AND WORKLOAD

Content
  • valid for whole curriculum period:

    Exploratory data analysis.

    Dimensionality reduction, PCA.

    Regression and classification.

    Clustering.

    Deep learning.

    Reinforcement learning.

    Language Modeling.

Assessment Methods and Criteria
  • valid for whole curriculum period:

    A combination of assignments, project, peer-grading, and possible exam, detailed in the beginning of the course.

Workload
  • valid for whole curriculum period:

    5 credits approx. 134 hours of work divided into 

    Lectures + self-study: 10*(2+3)=50 hours

    Assignments: 6 * 9 = 54 hours

    Project work: 26 hours

    Peer-grading: 4 hours

DETAILS

Study Material
  • valid for whole curriculum period:

    see course page

Substitutes for Courses
Prerequisites

FURTHER INFORMATION

Further Information
  • valid for whole curriculum period:

    Teaching Language: English

    Teaching Period: 2024-2025 Autumn I
    2025-2026 Autumn I

Guests cannot access this workspace. Please log in.