10. List of symbols

A                 area; parameter in the Debye-Hückel theory; constant in Eq. (7.61)

a                 activity; ionic radius; Tafel slope

a±                mean activity of the electrolyte

B                 parameter in the Debye-Hückel theory

b                 Tafel slope

C                capacitance; dimensionless concentration c/c0

Cd               capacitance of the diffuse layer

Cdl              double layer capacitance

Cp               pseudo capacitance

C2               capacitance of the inner layer

c                 molar concentration

c0                initial concentration

cb                bulk concentration (typically equal to c0)

D                diffusion coefficient; dissipation coefficient

D±               diffusion coefficient of the electrolyte

d                 width of the channel (Fig 7.14)

E                 energy; cell potential; strength of the leectric field (chapter 3.1)

E0               standard potential

E0’              conditional potential (formal potential)

E1/2             half wave potential

Eeq              equilibrium potential of the electrode

Ei                initial potential of the linear potential sweep

Es               switching potential of the linear potential sweep

Ediss            dissipated energy

Estored         stored energy

Ef                Fermi energy

e                 elementary charge, 1.602×10−19 C

e                electron

F                 Faraday constant, 96485 C mol−1

f                  F/RT; activity coefficient on the mole fraction scale; friction coefficient; frequency

f0                 charachteristic frequency of the quartz crystal

G                Gibbs free energy

\( \Delta G_a^{\ddagger} \)           activation energy of a reaction

H                enthalpy

H(s)            transfer function

H0               Hammet acidity function

H               Hammet basicity function

h                 thickness of a membrane; 2h = height of the channel (kuva 7.14)

I                  electric current; ionic strength

IC                capacitive current

If                 Faradic current

Ilim              electric current limited by diffusion

i                  current density

i0                 exchange current density

id                 current density in the Cottrell experiment

ikin              current density determined by kinetics

ilim              current density limited by diffusion

J                 flux of the amount of substance (mol cm−2 s−1)

j                  imaginary unit, \( \sqrt{-1} \)

K                equilibrium constant of a reaction

Ka               association constant

Kb               boiling point elevation constant

Kd               dissociation constant

Kf                freezing point depression constant li.e. cryoscopic constant

Kw               ionic product of water, 10−14 M2 at 25 °C

k                 reaction rate constant; Bolzmann constant

k0                standard rate constant of an electrochemical reaction

kB                Boltzmann constant 1,38×10−23 J K−1

ka                adsorption constant

kd                desorption constant

kox               rate constant of the oxidation reaction

kred              rate constant of the reduction reaction 

L                 inductance

l                  dimension of the electrode (Fig. (7.14))

M                molar mass

m                mass; molality

N                number of particles

NA              Avogadro constant, 6.023×1023 mol−1

n                 amount of substance

O(s)            output function

P                 pressure; probability

p                 partial pressure

Q                electric charge

q                 amount of heat; charge density; parameter in the Bjerrum theory

qe                electric charge in solution

q’                (adsorbed) charge of the inner layer

qd                charge of the diffuse layer

R                 resistance; gas constant 8.314 J K−1 mol−1

Rct               charge transfer resistance

Rp               pseudo resistance

r                  rreaction rate; distance in spherical coordinates, radius

S                 entropy; function of linear potential sweep in Eq. (7.23)

s                  Laplace variable

T                 thermodynamic (absolute) temperature; dimensionless time

t                  time; Hittorff transport number

ts                 time of the switching potential

U                internal energy

U(s)            input function

u                 mobility; dummy variable in integrals

V                 volume; potential field created by a single ion

\( \dot{V} \)              rate of volume flow

\( \overline{V} \)              partial molar volume

W                work/energy

w                work per particle

v                 rate of linear flow; reaction rate; rate of potentila sweep

x                 molar fraction; reaction coordinate

Y                 admittance

y                 activity coefficient on molality scale

Z                 impedance

z                  charge number; dimensionless location variable

\( \alpha \)                 degree of dissociation; charge transfer coefficient

\( \beta \)                 charge transfer coefficient

\( \Gamma \)                 surface concentration; gamma function

\( \Gamma \)i (1)            relative surface concentration of species i

\( \gamma \)                 surface tension

\( \gamma \)i                 activity coefficient of an ion on molality scale

\( \gamma \)±                mean activity coefficient on molality scale

\( \delta \)                 thickness of diffusion layer; integration step; phase difference between ac signals

\( \varepsilon \)0                relative permittivity of space 8.854×10−12 F m−1

\( \varepsilon \)r                relative permittivity

\( \eta \)                 overpotential E − Eeq; viscosity

\( \eta \)a               activation overpotential

\( \eta \)c               concentration overpotential

\( \theta \)                 exp[(nF)/(RT)(EE0’)]; surface coverage of hydrogen or oxygen

\( \theta \)i                exp[(nF)/(RT)(EiE0’)]

\( \kappa \)                 conductivity of solution

\( \kappa \)−1              Debye length

\( \Lambda \)                molar conductivity of solution

\( \lambda \)i                molar conductivity of an ion

\( \lambda \)                 solvent reorganization energy in the Marcus theory

\( \mu \)                 chemical potential

\( \mu \)0               standard chemical potential

\( \tilde\mu \)               electrochemical potential

\( \tilde\mu^0 \)              standard electrochemical potential

\( \nu \)                 dynamic viscosity of solution

\( \pi \)                 osmotic pressure

\( \xi \)                 ratio of diffusion coefficients \( \sqrt{D_{\text{O}}/D_{\text{R}}} \)

\( \rho \)                 density of solution; charge density

\( \sigma \)                 constant of Warburg impedance; dimensionless sweep rate (nF)/(RTv

\( \sigma \)m               surface charge of the electrode

\( \tau \)                 time constant of RC circuit t = RC, dimensionless time \( \tau=\sigma t \), transition time (7.50)

\( \Phi \)                work funktion; osmotic coefficient

\( \phi \)                 galvani potential

\( \phi \)0                galvani potential of the solution at the surface of the electrode

\( \phi \)2                galvani potential at the interface of Helmholtz layer

\( \Delta_o^w\phi^0 \)         standard potential of ion transfer from organic phase to water

\( \varphi \)                 dimensionless galvani potential (F\( \phi \))/(RT); surface coverage in Chapter 9

\( \psi \)                outer potential; parameter in linear potential sweep, Eq (7.23)

\( \ \chi \)                 surface potential; dimensionless current

\( \omega \)                angular frequency