

MEC-E8007 Fracture Mechanics

Luc St-Pierre

Schedule

Flipped learning approach:

 First, go through the material on your own. Recordings are available via MyCourses.

Seminar: Tue/Wed, 14.15-16.00, Otakaari 4, room 216.

I will summarise the theory and introduce a few examples.

Calculation hours: Thurs/Fri, 14.15-16.00, Otakaari 4, room 216.

I will be available to help you with the weekly assignment.

Evaluation

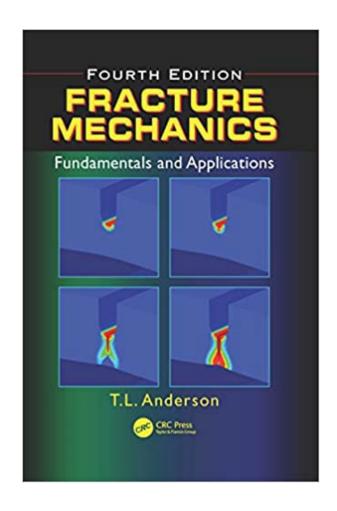
5 Assignments (40%)

- Your mark will be based on your <u>4 best</u> assignments.
- 4 sets of problems and 1 computer exercise.
 - Upload your assignment via MyCourses.

Exam (60%)

- Friday June 7, 9.00-12.00.
- Online, open book.
- You need to pass the exam to pass the course.

Grade	Final mark %
5	≥90
4	80-89
3	70-79
2	60-69
1	50-59
0 – Fail	≤49



Material

Lecture notes will be available on MyCourses.

Consult the textbook if you need additional information:

• T.L. Anderson, Fracture Mechanics: fundamentals and applications, 4th edition, 2017.

E-books available

- M. Janssen; J. Zuidema; R.J.H. Wanhill; Fracture mechanics, Spon press, 2004.
- A.T. Zehnder; *Fracture mechanics*, Springer, 2012.
- N. Perez; Fracture mechanics, Springer, 2017.
- E.E. Gdoutos; Fracture mechanics: an introduction, Springer, 2020.

Why study fracture mechanics?

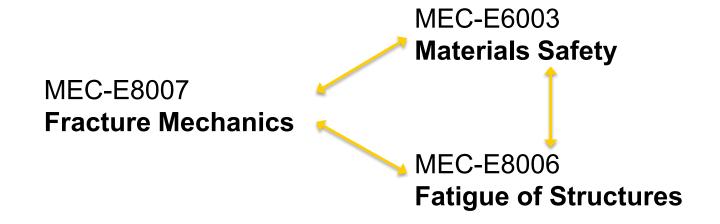
- To understand how materials break and prevent structures from failing.
- Most structures fail because of:
 - 1. Negligence during design, fabrication or operation.
 - 2. The use of new materials or processes leads to unexpected outcomes.
- Several type-2 failures have led to the development of fracture mechanics, which is a relatively new field (1900-).

Historical perspective

Old bricks and mortar structures carry **compressive** stresses.

New steel structures were able to carry tensile stresses.

This change in design lead to problems. Occasionally, a steel structure would fail at stresses well below the tensile strength.


Content

- Linear Elastic Fracture Mechanics (LEFM)
 - Week 1: Stress intensity factor.
 - Week 2: Energy release rate.
 - Week 3: Mixed-mode fracture.
- Elastic Plastic Fracture Mechanics
 - Week 4: Plastic zone size and J-integral.
 - Week 5: Numerical approaches, Fracture tests and mechanisms.
 - Week 6: Review.

Workload is a bit lower in weeks 5-6 to help you review for the exam.

Connections with other courses

