MS-A0103 - Differentiaali- ja integraalilaskenta 1 (ELEC1, ENG1), Luento-opetus, 4.9.2023-18.10.2023
This course space end date is set to 18.10.2023 Search Courses: MS-A0103
VERKKOKIRJA
Differentiaali- ja integraalilaskenta - verkkokirja, tekijä Pekka Alestalo
Englanninkielisen MOOC-kurssin luentomateriaali, joka perustuu tämän kurssin luentoihin. Mukana on interaktiivisia JSXGraph-kuvia, joita ei ole suomenkielisissä luentokalvoissa. Toistaiseksi vain luvut 1-5, 7 ja 9 ovat suomeksi.
2. Sarjat
Suppeneminen
Suppeneminen
Jonosta (ak) voidaan muodostaa sen osasummia asettamalla sn=a1+a2+⋯+an.
Jos osasumminen jonolla (sn) on raja-arvo s∈R, niin luvuista (ak) muodostettu sarja suppenee ja sen summa on s. Tällöin merkitään a1+a2+⋯=∑∞k=1ak=limn→∞∑nk=1ak⏟=sn=s.
Indeksöinti
Osasummat kannattaa indeksöidä samalla tavalla kuin alkuperäinen jono (ak); esimerkiksi jonon (ak)∞k=0 osasummat ovat s0=a0,s1=a0+a1 jne.
Sarjaan voidaan tehdä indeksinsiirtoja ilman että varsinainen sarja muuttuu: ∑∞k=1ak=∑∞k=0ak+1=∑∞k=2ak−1.
Konkreettinen esimerkki: ∑∞k=11k2=1+14+19+⋯=∑∞k=01(k+1)2
Kokeile!
Laske sarjan ∞∑k=0ak osasummia:
sarjan k. termi: , aloita summaus kohdasta
Sarjan hajaantuminen
Sarja, joka ei suppene, on hajaantuva. Tämä voi tapahtua kolmella eri tavalla:
- sarjan osasummat kasvavat rajatta kohti ääretöntä
- sarjan osasummat pienenevät rajatta kohti miinus ääretöntä
- osasummien jono heilahtelee niin, ettei sillä ole raja-arvoa.
Hajaantuvan sarjan kohdalla merkintä ∞∑k=1ak ei oikeastaan tarkoita mitään (se ei ole reaaliluku). Tällöin voidaan tulkita, että merkintä tarkoittaa osasummien jonoa, joka on aina hyvin määritelty.
Perustuloksia
Geometrinen sarja
Geometrinen sarja ∑∞k=0aqk suppenee, jos |q| (tai a=0), jolloin sen summa on a1−q. Jos |q|≥1, niin sarja hajaantuu.
Todistus. Osasummille on voimassa
∑nk=0aqk=a(1−qn+1)1−q, josta väite seuraa.
◻
Yleisemmin ∑∞k=iaqk=aqi1−q=sarjan 1. termi1−q, jos |q|
Esimerkki 1.
Määritä sarjan ∑∞k=134k+1 summa.
Ratkaisu. Koska 34k+1=34⋅(14)k, niin kyseessä on geometrinen sarja. Sen summa on 34⋅1/41−1/4=14.
Laskusääntöjä
Suppenevien sarjojen ominaisuuksia:
- ∞∑k=1(ak+bk)=∞∑k=1ak+∞∑k=1bk
- ∞∑k=1(cak)=c∞∑k=1ak, kun c∈R on vakio
Todistus. Nämä seuraavat vastaavista tuloksista jonojen raja-arvolle.
◻
Huomautus: Sarjoilla ei ole jonojen kaltaista tulosääntöä, koska jo kahden termin summille (a1+a2)(b1+b2)≠a1b1+a2b2. Tulosäännön oikea muoto on sarjojen Cauchy-tulo, jossa myös ristitermit otetaan huomioon.
Katso esimerkiksi https://en.wikipedia.org/wiki/Cauchy_product
Lause 1.
Jos sarja ∞∑k=1ak suppenee, niin limk→∞ak=0.
Kääntäen: Jos limk→∞ak≠0, niin sarja ∞∑k=1ak hajaantuu.
Jos sarjan summa on s, niin ak=sk−sk−1→s−s=0.
◻
Huomautus: Ominaisuutta limk→∞ak=0 ei voi käyttää sarjan suppenemisen osoittamiseen; vrt. seuraavat esimerkit. Tämä on eräs yleisimmistä päättelyvirheistä sarjojen kohdalla!
Esimerkki
Tutki sarjan ∑∞k=1kk+1=12+23+34+… suppenemista.
Ratkaisu. Sarjan yleisen termin raja-arvo on limk→∞kk+1=1. Koska raja-arvo ei ole nolla, niin sarja hajaantuu.
Harmoninen sarja
Harmoninen sarja ∑∞k=11k=1+12+13+… hajaantuu, vaikka yleisen termin ak=1/k raja-arvo on nolla.
Tämän klassisen tuloksen todisti ensimmäisenä 14. vuosisadalla Nicole Oresme, jonka jälkeen monia muitakin perusteluja on keksitty. Tässä esimerkkinä kaksi erilaista päättelyä.
i) Alkeellinen todistus. Oletetaan, että sarja suppenee ja yritetään johtaa tästä ristiriita. Olkoon siis s∈R harmonisen sarjan summa: s=∑∞k=11/k. Tällöin
s=(1+12)+(13+14)+(15+16)+⋯=∑∞k=1(12k−1+12k). Selvästi
12k−1>12k>0 kaikille k≥1 ⇒ ∑∞k=112k−1>∑∞k=112k=s2, joten s=∑∞k=112k−1+∑∞k=112k=∑∞k=112k−1+12∑∞k=11k⏟=s.
=∑∞k=112k−1+s2>∑∞k=112k+s2=s2+s2=s. Päädyimme siis epäyhtälöön s>s, joka on ristiriita. Alkuperäinen oletus suppenemisesta on siis väärä, joten sarja hajaantuu.
◻
ii) Todistus integraalin avulla: Pylvään korkeuksia 1/k vastaavan histogrammin alapuolelle jää funktion f(x)=1/(x+1) kuvaaja, joten pinta-aloja vertaamalla saadaan
∑nk=11k≥∫n0dxx+1=ln(n+1)→∞, kun n→∞.
◻
Positiiviset sarjat
Sarjan summan laskeminen on usein vaikeata ja monesti jopa mahdotonta, jos vaatimuksena on summan eksplisiittinen lauseke. Moniin sovelluksiin riittää myös summan likiarvo, mutta sitä ennen olisi syytä selvittää, onko sarja suppeneva vai hajaantuva.
Sarja ∞∑k=1pk on positiivinen (tai positiiviterminen), jos pk>0 kaikilla k.
Positiivisten sarjojen suppeneminen on hyvin selväpiirteistä:
Lause 2.
Positiivinen sarja suppenee täsmälleen silloin, kun sen osasummien jono on ylhäältä rajoitettu.
Syy: Osasummien jono on nouseva.
Esimerkki
Osoita, että superharmonisen sarjan ∑∞k=11k2 osasummille pätee sn kaikilla n, joten sarja suppenee.
Ratkaisu. Ratkaisu perustuu epäyhtälöön 1k2<1k(k−1)=1k−1−1k, kun k≥2, koska sen mukaan ∑nk=11k2<1+∑nk=21k(k−1)=2−1n<2 kaikilla n≥2.
Tämän päättelyn voi tehdä myös integraalin avulla.
Leonhard Euler selvitti vuonna 1735, että sarjan summa on π2/6. Perusteluna hän käytti sinifunktion sarja- ja tulokehitelmien vertailua.
Itseinen suppeneminen
Määritelmä
Sarja ∞∑k=1ak suppenee itseisesti, jos positiivinen sarja ∑∞k=1|ak| suppenee.
Lause 3.
Itseisesti suppeneva sarja suppenee (tavallisessa mielessä) ja |∑∞k=1ak|≤∑∞k=1|ak|.
Tämä on erikoistapaus majoranttiperiaatteesta, josta lisää myöhemmin.
Oletetaan, että ∑k|ak| suppenee. Tarkastellaan erikseen sarjan ∑kak positiivista ja negatiivista osaa: Olkoon bk=max(ak,0)≥0 ja ck=−min(ak,0)≥0. Koska bk,ck≤|ak|, niin positiiviset sarjat ∑bk ja ∑ck suppenevat lauseen 2 perusteella. Lisäksi ak=bk−ck, joten ∑ak suppenee kahden suppenevan sarjan erotuksena.
◻
Esimerkki
Tutki vuorottelevan (= etumerkit vaihtelevat vuorotellen + ja -) sarjan ∑∞k=1(−1)k+1k2=1−14+19−… suppenemista.
Ratkaisu. Koska |(−1)k+1k2|=1k2 ja superharmoninen sarja ∑∞k=11k2 suppenee, niin tutkittava sarja suppenee itseisesti, ja sen vuoksi myös tavallisessa mielessä.
Vuorotteleva harmoninen sarja
Itseinen suppeneminen ei kuitenkaan tarkoita samaa kuin tavallinen suppeneminen:
Esimerkki
Vuorotteleva harmoninen sarja ∑∞k=1(−1)k+1k=1−12+13−14+… suppenee, mutta ei itseisesti.
(Idea) Piirretään osasummajonon (sn) kuvaaja, josta huomataan, että parillisten ja parittomien indeksien osasummat s2n ja s2n+1 ovat monotonisia ja suppenevat kohti samaa raja-arvoa.
Sarjan summa on ln2, joka saadaan selville integroimalla geometrisen sarjan summakaavaa.
pisteet on yhdistetty janoilla havainnollisuuden vuoksi
Suppenemistestejä
Vertailutestit
Edelliset tarkastelut yleistyvät seuraavalla tavalla:
Lause 4.
(Majoranttiperiaate) Jos |ak|≤pk kaikilla k ja
∑∞k=1pk suppenee, niin myös ∑∞k=1ak suppenee.
(Minoranttiperiaate) Jos 0≤pk≤ak kaikilla k ja ∑pk hajaantuu, niin myös ∑ak hajaantuu.
Majorantin todistus. Koska ak=|ak|−(|ak|−ak) ja 0≤|ak|−ak≤2|ak|, niin ∑ak on suppeneva kahden suppenevan sarjan erotuksena. Tässä käytetään aikaisempaa lausetta 2 positiivisille sarjoille; kyseessä ei ole kehäpäättely!
Minorantin todistus. Oletuksista seuraa, että sarjan ∑ak osasummat kasvavat rajatta, joten sarja hajaantuu.
◻
Esimerkki
Tutki sarjojen ∑∞k=111+k3 ja ∑∞k=11√k suppenemista.
Ratkaisu. Koska0 kaikilla k∈N, niin ensimmäinen sarja suppenee majoranttiperiaatteen nojalla.
Toisaalta 1√k≥1k kaikilla k∈N, joten toisella sarjalla on hajaantuva harmoninen minorantti, joten se hajaantuu.
Suhdetesti
Käytännössä eräs parhaista tavoista tutkia suppenemista on suhdetesti, jossa sarjan peräkkäisten termien käyttäytymistä verrataan sopivaan geometriseen sarjaan:
Lause 5a.
Oletetaan, että on olemassa sellainen vakio 0<Q<1, että |ak+1ak|≤Q jostakin indeksistä k≥k0 alkaen.
Tällöin sarja ∑ak suppenee (ja sen "suppenemisnopeus"\ on samaa luokkaa kuin geometrisella sarjalla ∑Qk, tai jopa parempi).
Koska sarjan alkuosa ei vaikuta suppenemiseen (mutta se vaikuttaa toki summaan!), niin voidaan olettaa epäyhtälön pätevän kaikilla indekseillä k.
Tästä seuraa, että |ak|≤Q|ak−1|≤Q2|ak−2|≤⋯≤Qk|a0|, joten sarjalla on geometrinen majorantti, ja se suppenee.
◻
Suhdetestin raja-arvomuoto
Lause 5b.
Oletetaan, että raja-arvo limk→∞|ak+1ak|=q on olemassa. Silloin sarja ∑ak {suppenee, jos 0≤q<1,hajaantuu, jos q>1,voi olla suppeneva tai haantuva, jos q=1.
(Idea) Geometriselle sarjalle kahden peräkkäisen termin suhde on täsmälleen q. Suhdetestin mukaan muidenkin sarjojen suppenemista voidaan (usein) tutkia samalla periaatteella, kun suhdeluku q korvataan tällä raja-arvolla.
Valitaan raja-arvon määritelmässä ε=(1−q)/2>0. Silloin jostakin indeksistä k≥kε alkaen pätee |ak+1/ak|<q+ε=(q+1)/2=Q<1, ja väite seuraa lauseesta 4.
Tapauksessa q>1 sarjan yleinen termi ei lähesty nollaa, joten sarja hajaantuu.
Viimeinen tapaus q=1 ei sisällä mitään informaatiota (eikä myöskään todistettavaa).
Tämä tapaus esiintyy sekä harmonisen (ak=1/k, hajaantuu!) että yliharmonisen (ak=1/k2, suppenee!) sarjan kohdalla. Näissä tapauksissa suppenemista täytyy tutkia joillakin muilla menetelmillä, kuten aikaisemmin tehtiin.
◻
Esimerkki
Onko sarja ∑∞k=1(−1)k+1k2k=12−24+38−… suppeneva?
Ratkaisu. Tässä ak=(−1)k+1k/2k, joten |ak+1ak|=|(−1)k+2(k+1)/2k+1(−1)k+1k/2k|=k+12k=12+12k→12<1, kun k→∞. Suhdetestin perusteella sarja suppenee.