CS-C3240 - Machine Learning D, Lecture, 10.1.2022-8.4.2022
This course space end date is set to 08.04.2022 Search Courses: CS-C3240
Topic outline
-
Topic Section1 Supplement Week 1 Mon. 10.01. 14.15-16.00 Data, Model and Loss 2.1-2.3 Slides, Playlist Wed. 12.01. 16.15-18.00 Empirical Risk Minimization 3.1-3.2 Slides, Playlist Week 2 Mon. 17.01. 14.15–16.00 Classification I (Logistic regression, SVM, Perceptron) 3.6; 3.7 Slides, Playlist Wed. 19.01. 16.15-18.00 Classification II (Applications) Slides Week 3 Mon. 24.01. 14.15-16.00 Model Validation and selection 6.1-6.3 Slides, Old Lecture Wed. 26.01. 16.15–18.00 Project Info/Diagnosing ML 6.6 Notebook, Data, Slides Week 4 Mon. 31.01. 14.15–16.00 Regularization, ML at Helsinki (slides) 7.1-7.3 Slides , Old Lecture Wed. 02.02. 16.15-18.00 Deep Learning 3.11 Slides Week 5 Mon. 07.02. 14.15-16.00 Non-Parametric Methods 3.10, 4.4 Slides Wed. 09.02. 16.15-18.00 Clustering 8.1-8.3 Slides Playlist Week 6 Mon. 14.02. 14.15-16.00 Feature Engineering 6.6, 9.1-9.2 Slides Wed. 16.02. 16.15-18.00 Recap and QnA Week 7 (no lectures due to Aalto exam week) Week 8 Mo. 28.02
14.15-16.00Recap Lecture in U157/U2 Otakaari 1 Wed. 02.03
16.15-18.00Recap Lecture in U157/U2 Otakaari 1 Week 9 Mo. 07.03
14.15-16.00Ethical ML in U157/U2 Otakaari 1 slides Wed. 09.03
16.15-18.00QnA for Stage 2 of ML Project 1) A. Jung, "Machine Learning: The Basics", http://mlbook.cs.aalto.fi